1. 모듈/패키지등의 간섭을 피하기 위해 가상환경에서 실행
2. 필요 모듈 :
- opencv-contrib-python
- mediapipe
3. 웹캠을 이용한 MediaPipe Hands 추적 테스트
코드 출처 : https://google.github.io/mediapipe/solutions/hands
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
# For webcam input:
cap = cv2.VideoCapture(0)
with mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Hands', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
'놀아보자 > 인공지능' 카테고리의 다른 글
appinventor-squat templete (0) | 2023.06.15 |
---|---|
인공지능 앱 프로젝트 with 앱 인벤터-AI Model (0) | 2023.06.07 |
Korea Sign Language FingerSpelling Test (0) | 2022.04.28 |
파이썬 라이브러리를 활용한 머신러닝 도서 (0) | 2022.04.21 |
미디어파이프를 이용한 AI Web (1) | 2022.04.19 |